El uso de inteligencia artificial promete un diagnóstico de Alzheimer más rápido y preciso

Los investigadores del Instituto de Tecnología Stevens utilizan IA explicable para abordar la confiabilidad de los sistemas de IA en el campo médico

Redes neuronales. (Foto. Unsplash)
Redes neuronales. (Foto. Unsplash)
logo squared 200x200
19 septiembre 2020 | 00:10 h

Al detectar diferencias sutiles en la forma en que los enfermos de Alzheimer usan el lenguaje, los investigadores del Instituto de Tecnología Stevens han desarrollado un algoritmo de inteligencia artificial que promete diagnosticar con precisión la enfermedad de Alzheimer sin la necesidad de costosos escaneos o en -Prueba de personas. El software no solo puede diagnosticar la enfermedad de Alzheimer, a un costo insignificante, con una precisión de más del 95 por ciento, sino que también es capaz de explicar sus conclusiones, lo que permite a los médicos verificar la precisión de su diagnóstico.

"Este es un gran avance", dijo el creador de la herramienta, KP Subbalakshmi, director fundador del Instituto Stevens de Inteligencia Artificial y   profesor de ingeniería eléctrica e informática en la Escuela de Ingeniería y Ciencia Charles V. Schaefer. “Estamos abriendo un nuevo y emocionante campo de investigación y haciendo que sea mucho más fácil explicar a los pacientes por qué la IA llegó a la conclusión de que sí, mientras diagnosticaba a los pacientes. Esto aborda la importante cuestión de la confiabilidad de los sistemas de IA en el campo médico ”. 

"Estamos abriendo un nuevo y emocionante campo de investigación"

Se sabe desde hace mucho tiempo que la enfermedad de Alzheimer puede afectar el uso del lenguaje de una persona. Las personas con Alzheimer generalmente reemplazan los sustantivos con pronombres, como diciendo 'Él se sentó en él' en lugar de 'El niño se sentó en la silla'. 

Al diseñar un motor de inteligencia artificial explicable  que utiliza mecanismos de atención y una red neuronal convolucional, una forma de inteligencia artificial que aprende con el tiempo. Subbalakshmi y sus estudiantes pudieron desarrollar software que no solo podía identificar con precisión los signos reveladores bien conocidos de la enfermedad de Alzheimer, sino también detectar patrones lingüísticos sutiles previamente pasados ​​por alto.

Subbalakshmi y su equipo entrenaron su algoritmo utilizando textos producidos tanto por sujetos sanos como por enfermos de Alzheimer conocidos mientras describían un dibujo de niños robando galletas de un frasco. Usando herramientas desarrolladas por Google, Subbalakshmi y su equipo convirtieron cada oración individual en una secuencia numérica única, o vector, que representa un punto específico en un espacio de 512 dimensiones. 

Este enfoque permite asignar un valor numérico concreto incluso a oraciones complejas, lo que facilita el análisis de las relaciones estructurales y temáticas entre oraciones. Al usar esos vectores junto con características hechas a mano, aquellas que los expertos en la materia han identificado, el sistema de inteligencia artificial aprendió gradualmente a detectar similitudes y diferencias entre las oraciones pronunciadas por sujetos sanos o no saludables y, por lo tanto, a determinar con notable precisión la probabilidad de que un texto dado han sido producidos por un enfermo de Alzheimer. 

UN SISTEMA REVOLUCIONARIO

“Esto es absolutamente de vanguardia”, dijo Subbalakshmi, quien presentó su trabajo , en colaboración con sus estudiantes de doctorado, Mingxuan Chen y Ning Wang, el 24 de agosto en el 19º Taller Internacional sobre Minería de Datos en Bioinformática en BioKDD.  "Nuestro software de inteligencia artificial es la herramienta de diagnóstico más precisa disponible en la actualidad y, al mismo tiempo, es explicable". 

El sistema también puede incorporar fácilmente nuevos criterios que pueden ser identificados por otros equipos de investigación en el futuro, por lo que solo se volverá más preciso con el tiempo. “Diseñamos nuestro sistema para que sea modular y transparente”, explicó Subbalakshmi. "Si otros investigadores identifican nuevos marcadores de la enfermedad de Alzheimer, podemos simplemente conectarlos a nuestra arquitectura para generar resultados aún mejores".

Este sistema de IA permitirá en el futuro diagnosticar la enfermedad de Alzheimer basándose en cualquier texto, desde un correo electrónico personal hasta una publicación en las redes sociales

En teoría, los sistemas de inteligencia artificial podrían algún día diagnosticar la enfermedad de Alzheimer basándose en cualquier texto, desde un correo electrónico personal hasta una publicación en las redes sociales. En primer lugar, sin embargo, sería necesario entrenar un algoritmo utilizando muchos tipos diferentes de textos producidos por conocidos enfermos de Alzheimer, en lugar de solo descripciones de imágenes, y ese tipo de datos aún no está disponible. “El algoritmo en sí es increíblemente poderoso”, dijo Subbalakshmi. "Solo estamos limitados por los datos disponibles".

En los próximos meses, Subbalakshmi espera recopilar nuevos datos que permitan que su software se utilice para diagnosticar pacientes en función del habla en idiomas distintos del inglés. Su equipo también está explorando las formas en que otras afecciones neurológicas, como afasia, accidente cerebrovascular, lesiones cerebrales traumáticas y depresión, pueden afectar el uso del lenguaje. "Este método es definitivamente generalizable a otras enfermedades", dijo Subbalakshmi. "A medida que vayamos adquiriendo más y mejores datos, también podremos crear herramientas de diagnóstico precisas y optimizadas para muchas otras enfermedades". 

Los contenidos de ConSalud están elaborados por periodistas especializados en salud y avalados por un comité de expertos de primer nivel. No obstante, recomendamos al lector que cualquier duda relacionada con la salud sea consultada con un profesional del ámbito sanitario.
Lo más leído