Investigadores de la Unidad de Proteómica que lidera Javier Muñoz en el Centro Nacional de Investigaciones Oncológicas (CNIO), han descrito los mecanismos, hasta ahora desconocidos, que ayudan a mantener a las células madre embrionarias en el estado más óptimo para su utilización en medicina regenerativa. Sus resultados, que se publican en Nature Communications, contribuirán a mejorar el uso de estas células en la búsqueda de tratamientos para infartos cerebrales, afecciones cardiacas o enfermedades neurodegenerativas como el alzhéimer o el párkinson.
PLURIPOTENCIA 'NAIVE', EL ESTADO IDEAL PARA LA INVESTIGACIÓN
Las células madre embrionarias (CME) son pluripotentes, es decir, tienen la capacidad de poder generar cualquier tipo celular, una característica extremadamente valiosa para su uso en investigación y su potencial aplicación en terapias regenerativas. Esta pluripotencia puede ser de dos tipos: primed (‘preparada’), que ya contiene el germen de una diferenciación concreta, o naïve (‘no preparada’), un estado primordial y anterior en el desarrollo embrionario que posee una mayor capacidad para diferenciarse en cualquier tipo celular y, por tanto, una mayor relevancia en investigación. Sin embargo, el estado naïve es inherentemente inestable, ya que estas células reciben continuamente señales que promueven tanto su diferenciación al estado primed como su auto-renovación. Entender los mecanismos que regulan estos estados de pluripotencia es importante, ya que podrían mejorar el mantenimiento de los cultivos de CME con pluripotencia naïve equilibrada y duradera.
El método clásico para mantener CME en el estado naïve se basa en inhibir dos de las vías de señalización que promueven precisamente la diferenciación de estas células, método conocido como 2i. Más recientemente, se ha conseguido generar CME en este estado usando una aproximación completamente distinta, en la que se inhibe la actividad de Cdk8/19, una proteína que controla la expresión de numerosos genes, incluyendo aquellos que ayudan a mantener el estado naïve. “Aunque estas dos aproximaciones permiten cultivar células naïve, los mecanismos moleculares que llevan a cabo este proceso son todavía poco conocidos”, indica Javier Muñoz, líder de la investigación.
"Con una aproximación integrativa como la que presentamos aquí, podemos obtener una imagen precisa de las causas de la plasticidad celular que presentan las CME"
Ahora, utilizando la proteómica, técnica que estudia el conjunto de proteínas expresadas por el genoma de un organismo, los investigadores del CNIO han descrito una gran parte de los eventos moleculares que estabilizan estas células tan valiosas. “Es la primera vez que se utiliza la aproximación proteómica en este contexto”, explica Ana Martínez del Val, primera autora del artículo e investigadora predoctoral en la Unidad de Proteómica del CNIO. “Lo hemos conseguido analizando los mecanismos a diferentes niveles: en primer lugar, a nivel de fosfoproteoma, es decir, las proteínas que han experimentado un proceso químico denominado fosforilación, que regula (activa o inhibe) sus funciones; a continuación, analizando la expresión de esas proteínas; y finalmente, estudiando los cambios en los metabolitos, sustancias que producen las proteínas al llevar a cabo sus funciones. Con una aproximación integrativa como la que presentamos aquí, podemos obtener una imagen precisa de las causas de la plasticidad celular que presentan las CME”, indica Martínez del Val.
Además, los resultados de esta investigación podrían tener implicaciones para la investigación de algunos tipos de cáncer, pues se sabe que “la inhibición de Cdk8 reduce la proliferación celular en leucemia mieloide aguda a través de la activación de supresores tumorales”, y que “en cáncer colorrectal Cdk8 actúa como un oncogén”, escriben los autores en el trabajo que publica Nature Communications. “La actividad de Cdk8 es algo enigmática, puesto que esta proteína posee funciones completamente distintas dependiendo del contexto celular en el que se encuentre”, añade Muñoz. “Nuestros datos revelan numerosas dianas de Cdk8 hasta ahora desconocidas, lo que puede ayudar a entender mejor las funciones que controla esta proteína en otros contextos biológicos”.
LA PROTEÓMICA, UN PASO MÁS ALLÁ DE LA GENÓMICA
El trabajo del equipo del CNIO evidencia la necesidad de implicar de lleno a la proteómica en las estrategias de investigación básica del cáncer.
La investigación y el tratamiento de las enfermedades han experimentado espectaculares avances en las últimas décadas gracias a las técnicas que utiliza la biología molecular: dos de las más empleadas son la genómica, que estudia el ADN que contiene toda nuestra información genética, y la transcriptómica, que se centra en cómo el ADN se expresa en ARN mensajero como paso previo a la fabricación de las proteínas, que son la base de todas las funciones celulares imprescindibles para un organismo. La introducción en biomedicina de la perspectiva proteómica es relativamente reciente –ha alcanzado su madurez solo en los últimos 15 años– y, sin embargo, es fundamental para completar el círculo que abren las dos anteriores, las cuales no pueden estudiar procesos que tiene lugar después de que las proteínas hayan sido creadas, como por ejemplo la fosforilación. “Con proteómica, podemos estudiar propiedades de las proteínas que no están codificadas en la información genética, y por tanto inexplorables solo al estudiar ADN y ARN”, añade Martínez del Val. Una cuestión fundamental, ya que “las proteínas son, al fin y al cabo, las responsables últimas de cumplir las funciones vitales de la célula”, concluye Muñoz.
El estudio ha sido financiado por el Ministerio de Ciencia e Innovación, el Programa Ramón y Cajal y el Instituto de Salud Carlos III. El trabajo ha contado con la colaboración de investigadores del Instituto de Investigación Biomédica (IRB) en Barcelona y con la ayuda del Programa de Terapias Experimentales del CNIO.