El investigadores Victor Ambros y Gary Ruvkun han sido distinguidos con el Premio Nobel de Fisiología o Medicina 2024 por sus descubrimientos sobre microARN, una nueva clase de moléculas de ARN diminutas que desempeñan un papel crucial en la regulación genética, según ha anunciado este lunes el Instituto Karolinska en Estocolmo, Suecia.
"Su descubrimiento revolucionario en el pequeño gusano C. elegans reveló un principio completamente nuevo de regulación genética, que resultó ser esencial para los organismos multicelulares, incluidos los humanos. Los microARN están demostrando ser fundamentalmente importantes para el desarrollo y el funcionamiento de los organismos", señalan desde la Real Academia Sueca de las Ciencias.
De este modo, el Premio Nobel de este año se centra en el descubrimiento de un mecanismo regulador vital que se utiliza en las células para controlar la actividad genética. La información genética fluye del ADN al ARN mensajero (ARNm), a través de un proceso llamado transcripción, y luego a la maquinaria celular para la producción de proteínas. Allí, los ARNm se traducen para que las proteínas se fabriquen de acuerdo con las instrucciones genéticas almacenadas en el ADN. Desde mediados del siglo XX, varios de los descubrimientos científicos más fundamentales han explicado cómo funcionan estos procesos.
"Su descubrimiento revolucionario en el pequeño gusano C. elegans reveló un principio completamente nuevo de regulación genética, que resultó ser esencial para los organismos multicelulares, incluidos los humanos. Los microARN están demostrando ser fundamentalmente importantes para el desarrollo y el funcionamiento de los organismos"
Nuestros órganos y tejidos están compuestos por muchos tipos de células diferentes, todas con información genética idéntica almacenada en su ADN. Sin embargo, estas diferentes células expresan conjuntos únicos de proteínas. ¿Cómo es esto posible? La respuesta está en la regulación precisa de la actividad genética de modo que solo el conjunto correcto de genes esté activo en cada tipo de célula específico. Esto permite, por ejemplo, que las células musculares, las células intestinales y los diferentes tipos de células nerviosas realicen sus funciones especializadas. Además, la actividad genética debe ajustarse continuamente para adaptar las funciones celulares a las condiciones cambiantes de nuestro cuerpo y nuestro entorno. Si la regulación genética falla, puede provocar enfermedades graves como el cáncer, la diabetes o la autoinmunidad. Por lo tanto, comprender la regulación de la actividad genética ha sido un objetivo importante durante muchas décadas.
La regulación genética por microARN, descubierta por primera vez por Ambros y Ruvkun, ha estado en funcionamiento durante cientos de millones de años. Este mecanismo ha permitido la evolución de organismos cada vez más complejos. Sabemos por la investigación genética que las células y los tejidos no se desarrollan normalmente sin microARN. La regulación anormal por microARN puede contribuir al cáncer, y se han encontrado mutaciones en los genes que codifican microARN en humanos, causando afecciones como pérdida de audición congénita y trastornos oculares y esqueléticos. Las mutaciones en una de las proteínas necesarias para la producción de microARN dan lugar al síndrome DICER1, un síndrome raro pero grave vinculado al cáncer en varios órganos y tejidos.