Un estudio reconstruye ancestros de hace 2.600 millones de años en la herramienta genética CRISPR

El análisis de estas secuencias repetitivas presentes en el ADN de bacterias y arqueas permite descubrir fragmentos de material genético de virus que han infectado a sus antepasados, pudiendo reconocerla si se repite esa infección

Un estudio reconstruye ancestros de la herramienta genética CRISPR de hace 2.600 millones de años. (Foto: Freepik)
Un estudio reconstruye ancestros de la herramienta genética CRISPR de hace 2.600 millones de años. (Foto: Freepik)
3 enero 2023 | 10:00 h

Una investigación internacional liderada por científicos españoles ha reconstruido de forma pionera ancestros del sistema CRISPR-Cas de hace 2.600 millones de años y ha analizado su evolución en el tiempo. Los resultados del estudio, publicados en la revista científica 'Nature Microbiology', señalan que los sistemas revitalizados no solo funcionan, sino que presentan mayor versatilidad que las versiones actuales y podrían conllevar aplicaciones revolucionarias. De este modo, los investigadores consideran que "abre nuevas vías para la edición genética".

En el proyecto, dirigido por el investigador Ikerbasque de CIC nanoGUNERául Pérez-Jiménez, participan equipos del Consejo Superior de Investigaciones Científicas, la Universidad de Alicante, el Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) y otras instituciones estatales e internacionales.

Entre las repeticiones, estos microorganismos albergan fragmentos de material genético de virus que han infectado a sus antepasados, lo que les permiten reconocer si se repite la infección y defenderse cortando el ADN de los invasores mediante proteínas Cas asociadas a estas repeticiones

El acrónimo CRISPR es el nombre de unas secuencias repetitivas presentes en el ADN de bacterias y arqueas (organismos procariotas). Entre las repeticiones, estos microorganismos albergan fragmentos de material genético de virus que han infectado a sus antepasados, lo que les permiten reconocer si se repite la infección y defenderse cortando el ADN de los invasores mediante proteínas Cas asociadas a estas repeticiones. Se trata de un mecanismo (sistema CRISPR-Cas) de defensa antiviral. Esta habilidad de reconocimiento de secuencias de ADN es la base de su utilidad, como si de unas tijeras moleculares se tratase. La tecnología CRISPR-Cas permite hoy en día cortar y pegar trozos de material genético en cualquier célula, lo cual hace posible su utilización para editar el ADN.

Los esfuerzos de investigación actuales se centran en encontrar nuevas versiones de sistemas CRISPR-Cas con propiedades distintas en los lugares más recónditos del planeta. Para esto, se exploran sistemas de diferentes especies que habitan en entornos extremos o se aplican técnicas de diseño molecular para modificarlos. Una forma radicalmente diferente de encontrar nuevos sistemas es buscarlos en el pasado, que es precisamente la base de esta investigación.

"Resulta sorprendente que podamos revitalizar proteínas Cas que debieron existir hace miles de millones de años y constatar que ya tenían entonces la capacidad de operar como herramientas de edición genética, algo que hemos confirmado en la actualidad"

"Resulta sorprendente que podamos revitalizar proteínas Cas que debieron existir hace miles de millones de años y constatar que ya tenían entonces la capacidad de operar como herramientas de edición genética, algo que hemos confirmado en la actualidad editando con éxito genes en células humanas", ha explicado Lluís Montoliu, investigador del Centro Nacional de Biotecnología del CSIC (CNB-CSIC) y del CIBERER, y responsable del equipo que ha validado funcionalmente estas Cas ancestrales en células humanas en cultivo.

FUTURAS APLICACIONES

En la vertiente aplicada, "el trabajo representa una forma original de abordar el desarrollo de herramientas CRISPR para generar nuevos instrumentos y mejorar las derivadas de los existentes en organismos actuales", ha añadido el investigador de la Universidad de Alicante y descubridor de la técnica CRISPR-Cas, Francis Mojica. Por su parte, el investigador Pérez-Jiménez, remarca: "Los sistemas actuales son muy complejos y están adaptados para funcionar dentro de una bacteria. Cuando el sistema se utiliza fuera de ese entorno, por ejemplo, en células humanas, el sistema inmune provoca un rechazo y existen además determinadas restricciones moleculares que limitan su uso. Curiosamente, en los sistemas ancestrales algunas de estas restricciones desaparecen, lo que les confiere una mayor versatilidad para nuevas aplicaciones".

"Este logro científico hace posible disponer de herramientas de edición genética con propiedades distintas a las actuales, mucho más flexibles, lo cual abre nuevas vías en la manipulación de ADN y tratamiento de enfermedades tales como ELA, cáncer, diabetes"

Miguel Ángel Moreno, jefe del servicio de Genética del Hospital Ramón y Cajal e investigador del CIBERER, ha apuntado que "la ingenuidad que podía tener una nucleasa ancestral, en cuanto a que no reconoce tan específicamente algunas regiones del genoma, la convierte en una herramienta más versátil para corregir mutaciones que hasta ahora eran no editables o se corregían de manera poco eficiente". Por su parte, Ylenia Jabalera, investigadora del proyecto en nanoGUNE, sostiene que "este logro científico hace posible disponer de herramientas de edición genética con propiedades distintas a las actuales, mucho más flexibles, lo cual abre nuevas vías en la manipulación de ADN y tratamiento de enfermedades tales como ELA, cáncer, diabetes, o incluso como herramienta de diagnóstico de enfermedades".

REVOLUCIÓN MÉDICA

En declaraciones a SMC España, Nicolás Toro, profesor de Investigación del CSIC, ha resaltado que la tecnología basada en los sistemas CRISPR-Cas primitivos identificados en este estudio, así como la exploración de la diversidad de otros sistemas de defensa bacterianos, "puede representar una revolución en el avance de la medicina para la humanidad". "El estudio de los ancestros ya extintos de esta proteína actual revela una evolución desde unos sistemas que en su origen fueron más versátiles, tanto en el reconocimiento de las secuencias diana como en la naturaleza de las mismas, probablemente ADN de cadena sencilla y ARN", ha agregado.

Los contenidos de ConSalud están elaborados por periodistas especializados en salud y avalados por un comité de expertos de primer nivel. No obstante, recomendamos al lector que cualquier duda relacionada con la salud sea consultada con un profesional del ámbito sanitario.
Lo más leído